Wrap-Around Mortgage Financing: Enhancing Lender and Investor Wealth

by Richard T. Garrigan

During the last decade, interest rates on permanent mortgage loans used to finance income-producing properties have moved irregularly upward and currently are at just below their peak levels. These high levels of interest are a principal reason why many proposed real estate developments are not economically feasible, especially in the case of multi-family residential projects. The continued existence of high interest rates has resulted, however, in more frequent use of an unusual form of second mortgage financing, the wrap-around (WA) mortgage loan.
The WA mortgage loan offers a lender the advantage of an above-market yield while at the same time enabling an investor-borrower to increase the wealth contribution of an existing real estate investment. Just how both parties to the transaction can thus benefit has not been previously analyzed in articles dealing with WA mortgage financing. This article, therefore, strives to present the essential financial characteristics of a typical WA mortgage loan from two perspectives: 1) that of a lender seeking to enhance the value of its mortgage portfolio, and 2) that of an investorborrower seeking to deal with the adverse financial and tax effects of increasingly larger amortization payments on a low interest rate permanent mortgage loan. ${ }^{1}$

THE WA MORTGAGE LOAN:
 ENHANCING THE LENDER'S YIELD

The WA mortgage loan is a second lien which has as its principal amount the sum of 1) the outstanding balance on an existing first mortgage loan

[^0]and 2) the additional funds advanced. After the WA mortgage loan closing, the WA lender receives debt service payments on the total debt and agrees to make principal and interest payments on the existing first mortgage loan, but only to the extent that such payments are received from the borrower. In addition, the WA mortgage lender has the right, subject to the provisions of the existing first mortgage loan, to pay off the existing mortgage debt and succeed to its priority.
The WA mortgage note generally carries an interest rate which is less than the going market rate for first mortgage loans. The WA lender, however, obtains the advantage of financial leverage because the interest rate on the existing first mortgage loan is lower than the interest rate on the WA mortgage loan. For example, assume that a first mortgage loan in the amount of $\$ 1,000,000$, carrying a 6% interest rate, exists on a multi-family residential property. Assume further that a WA mortgage loan of $\$ 1,500,000$ at 8% is negotiated. At the mortgage loan closing, the WA lender actually advances only $\$ 500,000$, and during the first month this lender will earn a 12% annual yield on the net amount advanced. ${ }^{2}$
The WA lender's yield will change each month as debt service payments reduce the existing mortgage debt. Furthermore, as will be clear from the following example, the net amount invested through a typical WA mortgage transaction (whereby both additional funds are advanced and the amortization term is extended) increases each month until the existing mortgage debt is completely amortized.

A Hypothetical WA Mortgage Loan Transaction

The following assumptions apply to a hypothetical WA mortgage loan transaction.

Existing First Mortgage Loan

Original amount: Unamortized balance: Original amortization term: Remaining amortization term: Interest rate: Monthly debt service payment:
$\$ 3,000,000$
\$2,290,559
25 years (300 months)
15 years (180 months)
6%
\$19,330
WA Mortgage Loan
Initial
Amount; $\quad \$ 3,000,000$
Amortization term:
Interest rate:
Monthly debt service payment:
Modifying
Balloon note provision:

25 years (300 months)
8%
\$23,155
10 years (120 months)

The above listing of assumptions portrays circumstances whereby an existing first mortgage loan in the amount of $\$ 3,000,000$ has an unamortized balance of $\$ 2,290,559$ following ten years of debt service payments. At this point, it is assumed that a WA mortgage loan is made in the amount of
$\$ 3,000,000$, requiring monthly debt service payments based on a 25 -year amortization term. The interest rate on the WA mortgage note is 8% while that on the existing mortgage note is 6%. The monthly debt service payments are $\$ 23,155$ for the WA mortgage loan and $\$ 19,330$ for the existing mortgage loan. Finally, under a modifying assumption, the WA mortgage note provides that the unamortized balance on the WA mortgage loan existing at the end of ten years will be repaid at that time.
Given these assumptions, Table 1 has been prepared to show the financial flows associated with the hypothetical WA mortgage loan. The information appearing in the table presents financial data for 37 selected months: 1) the first six months, 2) the final month for each of the 25 years of the WA mortgage amortization term, and 3) the six months following the final payment on the existing mortgage loan.
In examining these data, it is useful to evaluate each of the three table segments beginning with the first four columns. The information appearing in these columns consists of an amortization schedule for the existing mortgage loan. As shown, this debt is amortized through level payments of \$19,330 each month, with varying amounts being applied to interest and amortization as the loan is repaid over the remaining 180 months of its term. The next four columns of data are applicable to the WA mortgage loan and consist of an amortization schedule for this loan. The significance of these first two sets of columns lies in their use in interpreting the flow of funds on the WA mortgage investment as presented in the final six columns of Table 1.
An examination of these latter columns reveals a unique characteristic of a WA mortgage investment: the net amount invested by the WA mortgage lender is not reduced through amortization during the initial years, but rather increases in amount. For example, during the first month the net funds advanced by the WA mortgage lender total $\$ 709,441$, the difference between the $\$ 3,000,000 \mathrm{WA}$ mortgage loan and the $\$ 2,290,559$ outstanding on the existing first mortgage debt. The cash flow for this month realized by the WA mortgage lender, however, amounts to only $\$ 3,825$, which is the difference between the $\$ 23,155$ debt service payment on the WA mortgage loan and the $\$ 19.330$ debt service payment required on the existing loan.
A comparison of the interest levels for the two loans, on the other hand, discloses that the net interest earned of $\$ 8,547$ on the WA mortgage investment is substantially more than the cash flow of $\$ 3.825$; therefore, a large part of the earned interest is deferred. This difference is accounted for as a change in the net funds advanced; in effect, the net investment by the WA mortgage lender increases by $\$ 4,722$. Hence for the second month the net funds advanced becomes $\$ 714,163$. This fact may be verified by comparing the amounts of amortized debt of $\$ 2,996,845$ for the WA mortgage loan and $\$ 2,282,682$ for the existing mortgage loan as of the second month. The difference in these amounts is the $\$ 714,163$ net investment made by the WA mortgage lender.
As noted above, the principal enticement for a WA mortgage lender to make such a loan is the financial leverage afforded through the existing

TABLE 1
WA MORTGAGL LOAN FINANCIAL FLOWS

Montil	Exist ing: mortgage luat				What mortgage Ioan			
	Unamortized debt	Monthly pavment	Interest	Amortiziation	Linamortized debt	Monthly payment	Interest	Amortization
1	\$2, 2961, 259	\$19, 330	\$11,423	\$7.877	\$3,000,000	\$23,155	\$20,000	\$ 3,155
2	2, 282, 682	19,331)	11,413	7,417	2,996,845	23,155	19,979	3,176
\}	2,274, 763	19,330	11,37\%	7.956	$2,993,669$	23,155	19,958	3,197
4	2,26h, 809	19,330	11,334	7.996	2,990,472	23,135	19,936	3,219
\%	2,258,813	19.330	11,290	8,036	2.987,253	23,155	19,915	3,240
6	2,230,777	19,330	11, 154	8,076	$\therefore, 984,013$	23,155	19.894	3,261
1.2	2,201,711	14.330	11,1909	8,321	2.964 .115	23,155	19.761	3,394
24	2,099,061	19,330	10,495	8.835	2,921,857	23.155	19.479	3,576
36	1.990,080	19,330	9.950	9,380	2.876 .091	23, 135	19,174	3,981
48	1,874,377	19.330	9.372	4,458	$2,826,527$	23,155	18,844	4,311
60)	1,751.338	19.330	8,758	10.572	2,772,850	23.153	18,486	4,669
72	1,621,123	19.330	8,106	11,224	$2,714.717$	23,155	18,1998	5,057
84	1.482,664	19.330	7,413	11.917	2,631,754	29,155	17,678	5,477
965	1, 33 3,665	19,330	6,678	12,632	2,583,576	23,153	17,224	5.431
108	$1,174,549$	14,330	5,898	13,432	$\therefore, 309.733$	23.157	16, 732	6, 4, 33
120)	1,013,908	19,331)	5.070	14,260	$2,429,762$	23.154	16,199	0.436
132	837,497	19,330	4.190	15,140	$2,343,1,3$	23,15	15.621	7,534
144	631,237	19.330	3,250	16.074	$3, \therefore+4$,	-3, 1,	1.,496	8.159
150	452, 957	19,330	2,26is	17,065	2,1:1,112	23,13,	1:314	8.836
168	242,448	19,330	1.212	18.118	$2,037.758$	23.153	13.585	${ }^{9} .570$
180	18,955	19,050	45	18.955	1,918,613	23,155	12.791	10.363
181					1,4188,249	23, 15's	12,722	110,433
182					1,847,816	23.155	12,632	$10.30)\}$
183					1,887,313	23,155	1.,58?	10, 573
184					1,876,740	23,153	12,512	10, 614$\}$
185					1,866,097	23,155	12,441	10, 714
186					1,855,383	23.153	12,369	10,786
192					1.789,579	23,153	11.931	11, 224
204					1,649,835	23,135	10,999	12,156
216					1,498,493	23,155	9,990	13,165
228					1,334,589	24.155	8,897	14,258
240					1,157,081	23,155	7,71:	13,441
252					964,840	23,153	6.432	16,723
264					756,643	23.153	5,044	18, 111
276					531,166	23.155	3,541	19,614
288					2869.975	23,155	1,913	21, 242
300					22,510	22,6tin	150	22, 516

TABLE 1 (Continued)

Month	Net funds advanced	$\begin{aligned} & \text { Cash } \\ & \text { flow } \end{aligned}$	Net finterest earned	Interest retained	Change in net funds advanced	$\begin{aligned} & \text { Annual } \\ & \text { yield } \end{aligned}$
,	\$ 709,4/1	\$ 3,825	\$8.547	§ 3,825	\$ 4,722	14.46\%
2	714,163	3,825	8,566	3,825	4,741	14.39
3	718,904	3,825	8,584	3,825	4.759	14.33
4	723.663	3,825	8,602	3,825	4.777	14.26
5	728,440	3,825	8,621	3,825	4,796	14.20
6	733.236	3,825	8,640	3,825	4,815	14.14
12	762,404	3,825	8.752	3,825	4, 927	13.78
24	822,796	3,825	8.984	3,825	5,159	13.10
36	886,011	3,825	9.224	3,825	5,199	12.49
48	952,150	3,825	9,472	3,825	5,647	11.94
60	1,021,312	3,825	9,728	3,825	5,903	11.43
72	1,093,594	3,825	9,992	3.825	6,167	11.96
84	1,169,095	3.825	10,265	3.825	6,440	10.54
96	1,247.911	3.825	10,546	3,825	6,721	10.14
108	1,330,134	3,825	10,834	3,825	7.009	9.77
120	1,415,854	3,825	11,129	3.825	7.304	4.43
132	1,505,156	3,825	11,431	3,825	7,606	9.11
144	1,598,118	3,825	11,740	3.825	7,415	8.82
156	1,694,815	3,825	12,054	3,825	8,229	8.53
168	1,795,310	3,825	12,373	3,825	8,548	8.27
180	1,899,658	4.105	12,696	4.105	8,591	8.02
181	1,908,249	23.155	12,722	12,722	-10,433	8.00
182	1,897,816	23,155	12,652	12,652	$-10,503$	8.00
183	1,887,313	23,155	12,582	12,582	-10,573	8.00
184	1,876,740	23,155	12,512	12,512	$-10,643$	8.00
185	1,866,097	23,155	12,441	12,441	$-10,714$	8.00
186	1,855,383	23,155	12,369	12,369	-10.786	8.00
192	1,789,579	23,155	11,931	11,931	-11,224	8.00
204	1,649,835	23,155	10,999	10,999	-12,156	8.00
216	1,498,493	23,155	9,990	9.990	$-13,165$	8.00
228	1,334,589	23,155	8.897	8,897	$-14,258$	8.00
240	1,157,081	23,155	7,714	7,714	$-15,441$	8.00
252	964,840	23,155	6,432	6.432	$-16,723$	8.00
264	756,643	23,155	5,044	5,044	-18,111	8.00
276	531.166	23,155	3,541	3,541	-19,614	8.00
288	286,975	23,155	1,913	1.913	-21,242	8.00
300	22,516.	22,666	150	150	$-22,516$	8.00

debt remaining outstanding. For the hypothetical loan portrayed through Table 1 , the annual yield for the first month is $\$ 8,547 \div 709,441 \times 12=$.1446 , or 14.46%. During the second month, however, while the amount of net funds advanced grew by $\$ 4.722$, the net interest earned increased by only $\$ 19$ (from $\$ 8,547$ to $\$ 8,566$). Thus the annual yield declined to 14.39%, a pattern that is shown to continue until the 181 st month.
This pattern is attributable, of course, to the fact that the financial leverage afforded the WA mortgage lender undergoes continual change, with the yield declining until the point in time when the existing first mortgage loan is fully amortized. By the 24th month, the net funds advanced has increased to $\$ 822,796$ while the existing debt has been amortized to $\$ 2,099,061$. The annual yield as a consequence has declined to 13.10%. By the 60th month the annual yield has dropped to 11.43%; by the 120 th month it has become 9.43%; and by the 180 th month (the final month that the existing mortgage loan is outstanding), the annual yield is only 8.02%.
This yield decline poses a dilemma for the WA mortgage lender. The justification for the lower-than-market-rate of interest on the WA mortgage loan is the financial advantage afforded by the still lower interest rate on the existing loan. However, with a substantial portion of the original term of the existing loan having expired by the time the WA mortgage loan is made, the increasingly heavy amortization of the existing mortgage loan adversely affects the WA mortgage lender's position. Thus, between the 132nd and the 144th months (eleventh and twelfth years) the yield on net funds invested declines to less than 9%.
Were the hypothetical WA mortgage loan to remain outstanding beyond the 180th month, the WA lender would be saddled with an 8\% loan for up to another ten years. Further reference to Table 1 supports this last observation. Beginning with the 181 st month, the six columns portraying the flow of funds on the WA mortgage investment essentially duplicate the second set, which presents the WA mortgage loan amortization schedule. As of the 181st month, the cash flow becomes the entire $\$ 23,155$ monthly debt service payment, which for this month is comprised of $\$ 12,722$ of interest and $\$ 10,433$ of amortization. At this point, no interest is deferred and the change in net funds advanced is negative, consisting of the amortization payment. Furthermore, as noted, for this and subsequent months, the interest rate remains level at 8%.

The Balloon Note Provision

Fortunately, the lender's dilemma can be easily remedied through use of a balloon note provision, a frequently encountered means of protecting mortgage lenders against the risk of rising interest rates. In this case, its use would interrupt the continuous annual yield decline noted above. For example, were a balloon note provision to take effect after ten years (this being the modifying assumption specified above), the annual yield on the net funds advanced would decline only to 9.43%, that return associated with the WA lender's investment during the 120th month. As of the begin-
ning of this month, the amount of debt outstanding on the WA mortgage loan would be $\$ 2,429,762$, of which $\$ 1,415,854$ would represent the net investment made by the WA mortgage lender. Assuming that the value of the property has at least remained at its previous level, refinancing of the unamortized portion of the WA mortgage debt should not present much difficulty. Indeed, the WA mortgage lender's experience with the investor-borrower may cause this lender to be a primary candidate for such financing. ${ }^{3}$

An Observation on Realized Yields

While the above presentation accurately depicts the annual yields obtained through the WA mortgage lender's net investment in the WA mortgage loan itself, it does not show the realized yield that would obtain both from this investment and from the reinvestment of the monthly cash flows. The subject of realized yields on WA mortgage loans is largely unexplored in financial literature, and a detailed examination of this question is beyond the scope of this article. However, given the assumption of a ten-year balloon note provision, the $\$ 3,825$ monthly cash flows can be treated as an ordinary annuity. Through assuming that this annuity can be invested at, say, a 9% interest rate, compounded monthly, the future value can be easily computed through using 193.5143 as the appropriate interest factor. The future value of the monthly cash flows is thus $\$ 3,825 \times 193.5143$, or $\$ 740,192$. By adding this sum to the $\$ 1,423,158$ net WA investment existing after ten years (that is, at the end of 120 months), the combined future value is shown to be $\$ 2,163,350$. From a financial perspective, this wealth accumulation can be attributed to the original $\$ 709,441$ net investment in the WA mortgage loan. To solve for the realized yield, one simply determines the rate of return which equates $\$ 2,163,350$ to $\$ 709,441$ as a present value. In this case, the solution is a rate of return or realized yield of 11.20%.
Clearly, with reinvestment occurring at only 9%, the relative contribution which the reinvested cash flows make to the realized yield is very modest in comparison to that due to the net investment in the WA mortgage loan itself. ${ }^{4}$ From a lender's point of view, this characteristic is a major advantage of the WA mortgage loan. For while the cash flows are subject to the vagaries of interest rate levels, a properly structured WA mortgage loan permits a growing net investment to be made at consistently high annual yields.

ENHANCING THE INVESTOR'S WEALTH

Until now, this article has been primarily concerned with the financial position of the WA mortgage lender. At this point, three selected financing alternatives facing a prospective investor-borrower (hereafter called the investor) will be considered in determining the wealth contribution poten-
tial of the WA mortgage loan. In making this evaluation, it is first necessary to specify the characteristics of the property to be financed through each of the three mortgage loan alternatives.

A Hypothetical Real Estate Investment

The following cost, depreciation, financing, income, and investor tax assumptions apply to a hypothetical multi-family residential property. These assumptions provide the financial inputs needed to evaluate the investor's position following ten years' ownership, that being the point when financing alternatives including the WA mortgage loan are to be considered.

```
Cost
    Total: $4,000,000
    Land: $ 600,000
    Improvements: $3,400,000
    Undepreciated basis-improvements: $2,035,706
Depreciation
    Original useful life: 40 years
    Method:
Financing
    Original loan amount: $3,000,000
    Unamortized balance: $2,290,559
    Original amortization term: 25 years (300 months)
    Remaining amortization term: }15\mathrm{ years (180 months)
    Interest rate:
    Monthly debt service payment: $19,330
Net Operating Income
    Eleventh year:
    Rate of increase:
Investor Taxation
    Ordinary income tax rate: 40%
    Double declining balance
    6%
    $367,000
    1% per year
```

The above assumptions depict a property for which construction was assumed to have been completed in 1968 at a total development cost of $\$ 4,000,000$. Following ten years' ownership, the $\$ 3,400,000$ of improvements cost has been written down to $\$ 2,035,706$ through use of the double declining balance method of depreciation. The financing characteristics shown here were purposely made identical to those shown above for the assumed existing first mortgage loan. As indicated, the original loan was in the amount of $\$ 3,000,000$ and thus provided financing for 75% of the property's cost. The loan's terms, assumed to be negotiated in early 1966, called for amortization to occur over a 25 -year period at a 6% interest rate. Remaining assumptions depict the anticipated levels of net operating income and the investor's ordinary income tax rate.

The Existing Mortgage Loan Alternative

As alternatives to using WA mortgage financing, the investor could: 1) either retain the existing first mortgage loan as the only debt financing
TABLE 2

	Year			
	11	12	13	14
Annual Cash Flows				
Net operating income	\$367,000	\$370,670	\$374,377	\$378,120
Less loan interest	134,791	128,798	122,436	115,682
Less depreciation	101,785	96,696	91,861	87,268
Net taxable income	\$130,424	\$145,176	\$160,079	\$175,171
Add depreciation	101,785	96,696	91,861	87,268
Less loan amortization payments	97,158	103,150	109,512	116,267
Before-tax cash flow	\$135,052	\$138,722	\$142,428	\$146,172
Less tax payment	52,170	58,070	64,032	70,068
After-tax cash flow	\$ 82,882	\$ 80,651	\$ 78,396	\$76,104
Selected Financial Characteristics				
Depreciation to loan amortization payments ratio				
Net operating income to debt service ratio				
Cumulative after-tax cash flow	\$ 82,882	\$ 163,533	\$ 241,930	\$ 318,033
Undepreciated basis--improvements	\$1,933,921	\$1,837,225	\$1,745,363	\$1,658,095
Unamortized mortgage loan balance	\$2,193,401	\$2,090,251	\$1,980,738	\$1,864,471

source, or 2) prepay such debt through a refinancing transaction whereby a new first mortgage loan would be placed on the property. ${ }^{5}$ The financial results of the first of these alternatives, retaining the existing mortgage loan, have been incorporated into Table 2. The financial flows depicted in this table are based on an assumed continuation of the ownership of the above-described property for a second period of ten years. The table itself consists of two parts which together show annual cash flows and selected
TABLE 2 (Continued)

Year					
15	16	17	18	19	20
\$381,902	\$385,721	\$389,578	\$393,474	\$397,408	\$401,382
108,510	100,897	92,814	84,233	75,122	65,449
82,905	78,760	74,822	71,080	67,526	64,150
\$190,486	\$206,064	\$221,942	\$238,161	\$254,760	\$271,783
82,905	78,760	74,822	71,080	67,526	64,150
123,438	131,051	139,134	147,716	156,827	166,499
\$149,953	\$153,772	\$157,629	\$161,525	\$165,460	\$169,434
76,195	82,426	88,777	95,264	101,904	108,713
\$ 73,759	\$ 71,347	\$ 68,853	\$ 66,261	\$ 63,556	\$ 60,721
0.67	0.60	0.54	0.48	0.43	0.39
1.65	1.66	1.68	1.70	1.71	1.73
\$ 391,792	\$ 463,138	\$ 531,991	\$ 598,252	\$ 661,808	\$ 722,528
\$1,575,190	\$1,496,431	\$1,421,609	\$1,350,529	\$1,283,003	\$1,218,852
\$1,741,033	\$1,609,982	\$1,470,847	\$1,323,131	\$1,166,305	\$ 999,805

financial characteristics for the property. The annual cash flows segment follows a familiar pattern whereby each year's net operating income is reduced by mortgage loan interest and depreciation deductions to produce net taxable income. The depreciation expense is then added back and the monthly loan amortization payments are deducted to produce the beforetax cash flow. A tax payment, based on a 40% marginal ordinary income tax rate, is then deducted in computing the after-tax cash flow.

For year 11, the $\$ 367,000$ net operating income produces $\$ 135,052$ in before-tax cash flow which, after a tax payment of $\$ 52,170$, results in an after-tax cash flow of $\$ 82,882$. In subsequent years, despite the assumed growth in net operating income of one percent per year, the after-tax cash flows decline steadily to $\$ 60,721$ in year 20 . This decline occurs because net taxable income is growing at a much faster rate than net operating income and consequently the tax payments are shown to grow to $\$ 108,713$ by the 20th year. Further evaluation reveals that this growth in net taxable income is largely attributable to the decline in deductions for both loan interest and depreciation during the second ten-year ownership period.
Continuing with this analysis, reference to the second part of the table discloses that the depreciation deduction exceeds the loan amortization payments only during year 11 and then only by a ratio of 1.05 . Consequently, beginning with year 12 the investor pays income taxes on amounts of net taxable income which are greater than the amounts realized as before-tax cash flows. By year 20, the depreciation to loan amortization payments ratio had declined to 0.39. The net operating income subject to tax during this year is $\$ 271,783$, but only $\$ 169,434$ of this amount is realized as before-tax cash flow. The second ten years' ownership period thus may be described as one where reduced interest and depreciation deductions result in substantial income tax costs which, in turn, cause an uninterrupted decline in after-tax cash flows.
Further reference to Table 2 discloses much useful added information. Were the existing loan used as the sole source of financing, the net operating income to debt service ratio would increase from a high 1.58 in year 11 to a very high 1.73 in year $20 .{ }^{6}$ From the lender's perspective, this change would represent an improvement in loan quality. Then, as shown, the cumulative after-tax cash flow grows to $\$ 722,528$ over the ten-year period and thus averages about $\$ 72,253$ per year. The undepreciated basisimprovements is shown to decline to $\$ 1,218,852$ at the end of year 20 while the unamortized mortgage loan balance declines to $\$ 999,805$ by the end of the 20th year.

The WA Mortgage Loan Alternative

In Table 3, the financial flows to be associated with use of the WA mortgage loan alternative are illustrated. As neither the net operating income of the property nor the depreciation deductions are affected by the use of the WA mortgage financing, the amounts given for these items are the same as those shown in Table 2. However, as the mortgage financing now consists of a $\$ 3,000,000,8 \%$ interest rate, 25 -year amortization term WA mortgage loan, the loan interest for year 11 has increased from the $\$ 134,791$ shown in Table 2 to $\$ 238,581$. This expense, together with the depreciation deduction of $\$ 101,785$, results in year 11's net taxable income being only $\$ 26,634$.
After adding back the depreciation expense and deducting the loan amortization payments, before-tax cash flow of $\$ 89,146$ is shown to have been generated. This cash flow amount is $\$ 45,906$ less than the $\$ 135,052$ shown

INVESTOR FINANCIAL FLOWS FOR	ERSHIP YEAR GAGE LOAN A	11 THROUGH ERNATIVE	THROUGH U	OF THE
	Year			
	11	12	13	14
Annual Cash Flows				
Net operating income	\$367,000	\$370,670	\$374, 377	\$378,120
Less loan interest	238,581	235,321	231,791	227,968
Less depreciation	101,785	96,696	91,861	87,268
Net taxable income	\$ 26,634	\$ 38,653	\$ 50,725	\$ 62,885
Add depreciation	101,785	96,696	91,861	87,268
Less loan amortization payments	39,273	42,533	46,063	49,886
Before-tax cash flow	\$89,146	\$ 92,816	$\$ 96,523$	$\$ 100,267$
Less tax payment	10,654	$15,461$	$20,290$	$25,154$
After-tax cash flow	\$ 78,493	\$ 77,355	\$, 76,233	$\$ 75,113$
Selected Financial Characteristics				
Depreciation to loan amortization payments ratio 2.59 2.27 1.99 1.75				
Net operating income to debt service ratio 1.32 1.33 1. 35				
Cumulative after-tax cash flow	\$ 78,493	\$ 155,848	\$ 232,081	\$ 307,193
Undepreciated basis--improvements	\$1,933,921	\$1,837,225	\$1,745,363	\$1,658,095
Unamortized mortgage loan balance	\$2,960,727	\$2,918,194	\$2,872,131	\$2,822,245

in Table 2, with the difference being entirely attributable to the higher debt service payments required on the WA mortgage loan. While the before-tax cash flow is substantially less than that generated through use of only the existing mortgage loan, the after-tax cash flow of $\$ 78,493$ is but modestly less than the $\$ 82,882$ listed in Table 2 for year 11. The reason for so slight a difference, of course, is that the tax payment associated with the WA mortgage loan's use is only $\$ 10,654$, far less than the $\$ 52,170$ which would
TABLE 3 (Continued)

Year					
15	16	17	18	19	20
\$381,902	\$385,721	\$389,578	\$393,474	\$397,408	\$401,382
223,827	219,343	214,487	209,227	203,531	197,362
82,905	78,760	74,822	71,080	67,526	64,150
\$ 75,170	\$87,618	\$100,270	$\overline{\$ 113,166}$	\$126,351	\$139,870
82,905	78,760	74,822	71,080	67,526	64,150
54,027	58,511	63,367	68,627	74,323	80,491
\$104,048	\$107,867	\$111,724	\$115,620	\$119,555	\$123,529
- 30,068	35,047	40,108	45,266	50,540	55,948
\$ 73,980	\$72,820	\$ 71,616	\$ 70,353	\$ 69, 014	\$.67,581
1.54	1.35	1.18	1.04	0.91	0.80
1.37	1.39	1.40	1.42	1.43	1.45
\$ 381,173	\$ 453,993	\$ 525,609	\$ 595,962	\$ 664,977	\$ 732,557
\$1,575,190	\$1,496,431	\$1,421,609	\$1,350,529	\$1,283,003	\$1,218,852
\$2,768,218	\$2,709,707	\$2,646,340	\$2,577,713	\$2,503,391	\$2,422,899

have been paid were the existing mortgage loan used as the sole financing source.

Further reference to Table 3 discloses similar, but far less disadvantageous, patterns than were observed in Table 2. During the second ten years' ownership period, the interrelationships between net operating income and the loan interest and depreciation result in net taxable income growing from $\$ 26,634$ in year 11 to $\$ 139,870$ in year 20 . But the increases in
before-tax cash flow are much smaller, being limited by the growth in net operating income of 1% per year. As a result, tax payments each year increase by more than the increase in before-tax cash flow, causing an uninterrupted decline in after-tax cash flow from $\$ 78.493$ in year 11 to $\$ 67,581$ in year 20 .
Notwithstanding this decline, however, the investor would realize more after-tax cash flow through use of the WA mortgage loan alternative. Over the entire ten-year period, Table 3 shows that the cumulative after-tax cash flow attributable to the use of the WA mortgage loan is $\$ 732.557$, in comparison to that of $\$ 722,528$ shown in Table 2. This advantage in favor of the WA mortgage loan develops irregularly over the ten-year period. During years 11 through 14 , the yearly advantage rests with the existing mortgage loan; at the end of the 14th year, the cumulative after-tax cash flow for the existing mortgage loan is $\$ 318,033$ compared to $\$ 307,193$ for the WA mortgage loan. Beginning with the 15th year, however, the annual after-tax cash flow associated with the WA mortgage loan exceeds that for the existing mortgage loan; by the 19th year, the cumulative after-tax cash flow listed in Table 3 also exceeds that for the existing mortgage loan.
The selected financial characteristics segment of Table 3 provides additional useful information. The declining amounts of depreciation are adequate to cover loan amortization payments in all but the last two years, ranging from a ratio of 2.59 in year 11 to 0.80 in year 20. Furthermore, the net operating income to debt service ratio improves each year, ranging from a satisfactory 1.32 during year 11 to a relatively high 1.45 during year 20. Since depreciation policy does not change, the amounts shown for undepreciated basis-improvements are identical to those in Table 2. In comparison to Table 2 , however, major and very significant differences do occur in the amounts shown as each year's unamortized mortgage loan balance. During each of the ten years, the unamortized balance for the WA mortgage loan exceeds that for the existing mortgage loan to an increasingly greater extent, an obvious result of the WA mortgage loan being for a higher amount and having lower amortization payments. At the end of the 20th year, the $\$ 2,422,899$ unamortized balance for the WA mortgage loan exceeds that of $\$ 999,805$ for the existing mortgage loan by $\$ 1,423,094 .{ }^{7}$
In analyzing the significance of this difference, four elements would normally be considered: 1) the net amount advanced under the WA mortgage loan, 2) the difference in annual after-tax cash flows, 3) the difference in unamortized mortgage loan balances, and 4) the reinvestment rates required to equate the financial flows involved. The difference between the annual after-tax cash flows is not significant, and on a cumulative basis favors the WA mortgage loan. Therefore, the relative advantage of the WA mortgage loan alternative can be evaluated in terms of items 1,3 , and 4 . In making this evaluation, it will be assumed that the WA mortgage loan terms incorporate the balloon note provision described above and that both the WA mortgage lender and investor contemplate a ten-year financing term. Given this assumption, the investor will thus have obtained $\$ 709,441$ in additional mortgage funds at a cost of having a mortgage liability which
is $\$ 1,423,094$ larger than would have existed had the WA mortgage loan alternative not been elected.
Without considering the question of risk, the attractiveness of the WA mortgage loan can be judged in light of the rate of return which would equate $\$ 1,423,094$ to $\$ 709,441$ in a present value sense. Through dividing $\$ 1,423,094$ by $\$ 709,441$, an interest factor of 2.00593 is obtained. This compares to the interest factor of 2.00966 for a $7 / \%$ compound interest rate, based on monthly compounding over a ten-year period. Thus, if the investor could achieve an after-tax return of 7% on $\$ 709,441$ advanced through the WA mortgage loan, it would be economically advantageous to enter into that transaction. A yield of 7%, however, represents only the threshold of acceptability. The following information depicts the financial advantage of investing the $\$ 709,441$ at the higher after-tax returns of 8,9 , and 10% based on monthly compounding over a ten-year period:

$\underline{\text { Percent }}$	Interest factor	Future value	Net additional mortgage liability	Investor financial advantage
8	2.21964	\$1,574,704	\$1,423,094	\$151,610
9	2.45135	1,739,088	1,423,094	315.994
10	2.70704	1,920,485	1,423,094	497,391

Unfortunately, relatively little information is available on the after-tax returns which actually have been achieved through equity investment in real estate. After-tax returns of, say, 9 to 10% would, however, be in line with those on equity capital achieved by many of the larger U.S. corporations. Were the investor able to achieve after-tax returns in this range, choosing the WA mortgage loan alternative would considerably enhance his wealth.

The Refinancing Alternative

Before concluding that the WA mortgage loan is the preferred financing vehicle, it is appropriate to examine the third alternative, the refinancing of the existing first mortgage loan. Here, it is assumed that the available financing consists of a $\$ 3,000,000,9.5 \%$ interest rate, 30 -year amortization term mortgage loan. Given these specifications, this alternative will be evaluated through use of Table 4.
Examination of this table discloses that neither the net operating income nor the depreciation deductions are affected by the refinancing transaction. An evaluation of the much higher interest expense associated with this transaction, however, reveals that the refinancing would result in much lower amounts of net taxable income than either of the other two alternatives. For years 11 and 12, a net loss would occur with the result (assuming the applicability of a 40% marginal ordinary income tax rate) being tax savings of $\$ 7.597$ and $\$ 3,359$, respectively.
This financing alternative also has much lower loan amortization payments associated with it, especially compared to the existing mortgage loan

*Tax savings.
case. Notwithstanding the low loan amortization payments, existence of tax savings during years 11 and 12 , and relatively low tax payments in subsequent years, the after-tax cash flow for each year is less than that shown in Table 3 for the WA mortgage loan alternative. Viewed on a cumulative basis, the after-tax cash flow resulting from the refinancing transaction would amount to $\$ 696,768$ compared to the $\$ 732,557$ attributable to the WA mortgage loan. The reason for the reduced cash flow is the very high interest expense associated with the refinancing alternative.

Year					
15	16	17	18	19	20

TABLE 4 (Continued)

$$
\begin{aligned}
& \begin{array}{r}
\$ 397,408 \\
263,269 \\
67,526 \\
\hline \$ 66,613 \\
67,526 \\
39,438 \\
\hline \$ 94,701 \\
26,645 \\
\hline \$ 68,056 \\
\hline
\end{array} \\
& \begin{array}{r}
\$ 393,474 \\
266,830 \\
71,080 \\
\hline \$ 55,563 \\
71,080 \\
35,878 \\
\hline \$ 90,766 \\
22,225 \\
\hline \$ 68,541
\end{array} \\
& \begin{array}{r}
\$ 389,578 \\
270,069 \\
74,822 \\
\hline \$ 44,687 \\
74,822 \\
32,638 \\
\hline \$ 86,870 \\
17,875 \\
\hline \$ 68,996 \\
\hline
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{r}
\$ 381,902 \\
275,697 \\
82,905 \\
\hline \$ 23,300 \\
82,905 \\
27,011 \\
\hline \$ 79,194 \\
9,320 \\
\hline \$ 69,874 \\
\hline
\end{array}
\end{aligned}
$$

Further reference to Table 4 discloses depreciation to loan amortization payments ratios which range from 5.50 to 1.48 ; these relatively high values primarily reflect the low loan amortization payments required on this loan. On the other hand, the net income to debt service ratio takes on a more marginal character in this case, with the value for year 11 being a moderately low 1.21 . Were the growth in net operating income to occur at the assumed rate of 1% per annum, however, this ratio would gradually increase to a value for the 20 th year of 1.33 . The undepreciated basisimprovements schedule remains unchanged.

The unamortized mortgage loan balance schedule conveys the added information needed to conclude that the refinancing transaction is inferior to the WA mortgage loan alternative. Examination of this schedule in comparison to the one presented in Table 3 reveals that the refinancing alternative has a higher unamortized loan balance during each year than that associated with the WA mortgage loan. At the end of year 20, the difference in unamortized debt amounts to $\$ 283,332(\$ 2,706,231-\$ 2,422,899)$. Consequently, since the refinancing transaction has both higher unamortized mortgage loan balances and lower after-tax cash flows than the WA mortgage loan, it is clearly not an economical alternative to the WA mortgage financing.

CONCLUSIONS

This article has provided examples of how a properly structured WA mortgage loan can enhance the wealth of two traditional adversaries, the mortgage lender and the borrower. In the opinion of this author, a WA mortgage loan transaction can also entail less risk than a mortgage loan resulting from a refinancing transaction. For while both loans would provide the same amount of funding, a WA mortgage loan would absorb fewer dollars of a property's income stream than would a mortgage loan arising from the property's being refinanced.
This point is supported by the net operating income to debt service ratios portrayed in Table 3 and Table 4. In the case of the WA mortgage loan alternative, the ratios ranged from 1.32 to 1.45. For the refinancing alternative, the ratios ranged from 1.21 to 1.33 . Although there is no uniform industry standard for this particular ratio, clearly a mortgage lender has more protection from default the more comfortably a property's net operating income exceeds the annual debt service payments. Furthermore, the amortization term of the WA mortgage loan may result in there being less debt outstanding as the loan is amortized than would be the case for a refinancing alternative. Finally, in the typical case, the WA mortgage lender obtains the right to cure any default in the existing mortgage loan. Should it be necessary, the WA mortgage lender could ultimately acquire the senior lien position and thus succeed to the role it would have occupied through having initially entered into a refinancing transaction.
Were each of these elements present in the case of a particular WA mortgage loan, a financial anomaly could exist: less risk and more reward.

REFERENCES

[^1]2. The first month's interest on the $\$ 1,500,000$ WA mortgage loan would be $\$ 10,000$ । $\$ 1,500,000$ * $.08 / 12$) while the interest owed on the existing mortgage loan would be $\$ 5,000(\$ 1,000,000-.06 / 12)$. The WA lender thus would receive $\$ 5,000$ in net interest, or a 12% annual yield
3. After 20 years, it is likely that the existing first mortgage debt could be repaid without penalty. Alternatively, the WA mortgage lender's net investment could be repaid and the existing mortgage could remain in effect for five more years.
4. Even if the reinvestment rate was 8 \% , the realized yield nonetheless would still be a high 11.01% -
5. Here it is assumed that no restrictions or penalties exist to preclude prepayment of the existing mortgage loan.
6. Although there is no uniform industry standard regarding the extent to which a property's net rental income should exceed the dollar amount required to service a proposed loan. life insurance companies which finance multi-family residential properties generally seek minimum debt service coverage ratios ranging from 1.25 to 1.333 .
7. The examples used in this article were prepared through the use of two separate computer programs which incorporate different procedures for rounding to whole dollar amounts. The $\$ 64$ difference between the $\$ 1.423 .094$ amount presented here and the $\$ 1,423,158$ net WA mortgage investment amount described above is a difference in rounding.

[^0]: Richard T. Garrigan received his Doctor of Philosophy degree from the University of Wisconsin and is now Associate Professor of Real Estate and Finance, graduate school of business, DePaul University, ('hicago. A member of the American Finance Association and American Real Estate and Urban Economics Association, he has published articles in Federal Home Loan Bank Berard Journal and Real Estate Review.

[^1]: 1. As this article focuses specifically on the financial characteristics of the WA mortgage loan, the reader may wish to consult other sources for material pertaining to its legal or operational characteristics. Among the more useful articles dealing with these matters are: John F Coshrane. "Wrap-Around Mortgage Financing," Legal Bulletion September 1971), pp. 185-20)3; Francis P. Gunning, "The Wrap-Around Mortgage . . Friend or U.F.O.?" Real Estate Reprew (Summer 1972). pp. 35-48; and Arnold Leider. "Wrap-around Mortgige Financing by a Commercial Bank," Th, Journal of Commercial Bank Londing ' April 19741, pp. 2-22.
